Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

نویسندگان

  • Sunny Li-Yun Chang
  • Shih-Yun Chen
  • Huai-Huei Huang
  • Hsin-An Ko
  • Pei-Tsen Liu
  • Ya-Chi Liu
  • Ping-Hau Chen
  • Fu-Chin Liu
چکیده

Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system.

Neurogenesis requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown here that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the olfactory epithelium. These include both Mash1+ olfactory receptor neuron (ORN) progenitors and NeuroD+ ORN precursors. Dis...

متن کامل

CDK7 and miR-210 Co-regulate Cell-Cycle Progression of Neural Progenitors in the Developing Neocortex

The molecular mechanisms regulating neural progenitor (NP) proliferation are fundamental in establishing the cytoarchitecture of the mammalian neocortex. The rate of cell-cycle progression and a fine-tuned balance between cell-cycle re-entry and exit determine the numbers of both NPs and neurons as well as postmitotic neuronal laminar distribution in the cortical wall. Here, we demonstrate that...

متن کامل

Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...

متن کامل

Scientific Report MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development

MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR-15b controls several aspects of cortical neurogenesis. miR-15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell...

متن کامل

MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development.

MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR-15b controls several aspects of cortical neurogenesis. miR-15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013